Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.417
Filtrar
1.
Science ; 383(6687): 1104-1111, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38422185

RESUMO

The eradication of the viral reservoir represents the major obstacle to the development of a clinical cure for established HIV-1 infection. Here, we demonstrate that the administration of N-803 (brand name Anktiva) and broadly neutralizing antibodies (bNAbs) results in sustained viral control after discontinuation of antiretroviral therapy (ART) in simian-human AD8 (SHIV-AD8)-infected, ART-suppressed rhesus macaques. N-803+bNAbs treatment induced immune activation and transient viremia but only limited reductions in the SHIV reservoir. Upon ART discontinuation, viral rebound occurred in all animals, which was followed by durable control in approximately 70% of all N-803+bNAb-treated macaques. Viral control was correlated with the reprogramming of CD8+ T cells by N-803+bNAb synergy. Thus, complete eradication of the replication-competent viral reservoir is likely not a prerequisite for the induction of sustained remission after discontinuation of ART.


Assuntos
Antirretrovirais , Proteínas Recombinantes de Fusão , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Antirretrovirais/uso terapêutico , Antirretrovirais/farmacologia , Anticorpos Amplamente Neutralizantes/administração & dosagem , Linfócitos T CD8-Positivos/virologia , Imunoterapia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Carga Viral , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/farmacologia , Indução de Remissão , Quimioterapia Combinada
2.
Int Immunopharmacol ; 126: 111240, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37992444

RESUMO

Anti-TNF-α therapy fails in 30% of patients, where TNF-α may not be the key causative factor in these patients. We developed a bispecific single-domain antibody block TNF-α and VEGF (V5-3).The experiments showed that V5-3 effectively activated proliferation and migration of RA-FLS and HUVEC, tube-forming role of HUVEC, and expression of inflammatory factors in vitro. Besides, the experiments indicated that the anti-RA activity of V5-3 was superior to Anbainuo in vivo. Application of V5-3 reduced the expression of inflammatory factors, extent of synovial inflammation and angiogenesis and attenuated the severity of autoimmune arthritis in collagen-induced arthritis (CIA) mice. Mechanistically, V5-3 suppressed p65, AKT and VEGFR2 phosphorylation, as well as production of TNF-α and VEGF in joint tissues. These results demonstrated that V5-3 displayed a superior effect of anti-RA, may be a new therapy to overcome the limitations of anti-TNF-α monoclonal antibody.


Assuntos
Artrite Experimental , Artrite Reumatoide , Humanos , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores do Fator de Necrose Tumoral/farmacologia , Inflamação/metabolismo , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Fibroblastos , Membrana Sinovial , Fragmentos Fc das Imunoglobulinas/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Receptores Tipo II do Fator de Necrose Tumoral
3.
Mol Cells ; 46(12): 764-777, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38052492

RESUMO

Recombinant immunotoxins (RITs) are fusion proteins consisting of a targeting domain linked to a toxin, offering a highly specific therapeutic strategy for cancer treatment. In this study, we engineered and characterized RITs aimed at mesothelin, a cell surface glycoprotein overexpressed in various malignancies. Through an extensive screening of a large nanobody library, four mesothelin-specific nanobodies were selected and genetically fused to a truncated Pseudomonas exotoxin (PE24B). Various optimizations, including the incorporation of furin cleavage sites, maltose-binding protein tags, and tobacco etch virus protease cleavage sites, were implemented to improve protein expression, solubility, and purification. The RITs were successfully overexpressed in Escherichia coli, achieving high solubility and purity post-purification. In vitro cytotoxicity assays on gastric carcinoma cell lines NCI-N87 and AGS revealed that Meso(Nb2)-PE24B demonstrated the highest cytotoxic efficacy, warranting further characterization. This RIT also displayed selective binding to human and monkey mesothelins but not to mouse mesothelin. The competitive binding assays between different RIT constructs revealed significant alterations in IC50 values, emphasizing the importance of nanobody specificity. Finally, a modification in the endoplasmic reticulum retention signal at the C-terminus further augmented its cytotoxic activity. Our findings offer valuable insights into the design and optimization of RITs, showcasing the potential of Meso(Nb2)-PE24B as a promising therapeutic candidate for targeted cancer treatment.


Assuntos
Antineoplásicos , Toxinas Bacterianas , Imunotoxinas , Neoplasias , Anticorpos de Domínio Único , Animais , Camundongos , Humanos , Exotoxinas/genética , Exotoxinas/farmacologia , Exotoxinas/química , Imunotoxinas/genética , Imunotoxinas/farmacologia , Imunotoxinas/química , Mesotelina , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/farmacologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , ADP Ribose Transferases/genética , ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Neoplasias/tratamento farmacológico
4.
Molecules ; 28(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38138504

RESUMO

Recombinant human interferon alpha-2b (rIFN) is widely used in antiviral and anticancer immunotherapy. However, the high efficiency of interferon therapy is accompanied by a number of side effects; this problem requires the design of a new class of interferon molecules with reduced cytotoxicity. In this work, IFN was modified via genetic engineering methods by merging it with the blood plasma protein apolipoprotein A-I in order to reduce acute toxicity and improve the pharmacokinetics of IFN. The chimeric protein was obtained via biosynthesis in the yeast P. pastoris. The yield of ryIFN-ApoA-I protein when cultivated on a shaker in flasks was 30 mg/L; protein purification was carried out using reverse-phase chromatography to a purity of 95-97%. The chimeric protein demonstrated complete preservation of the biological activity of IFN in the model of vesicular stomatitis virus and SARS-CoV-2. In addition, the chimeric form had reduced cytotoxicity towards Vero cells and increased cell viability under viral load conditions compared with commercial IFN-a2b preparations. Analysis of the pharmacokinetic profile of ryIFN-ApoA-I after a single subcutaneous injection in mice showed a 1.8-fold increased half-life of the chimeric protein compared with ryIFN.


Assuntos
Apolipoproteínas A , Interferon-alfa , Chlorocebus aethiops , Humanos , Camundongos , Animais , Interferon-alfa/genética , Interferon-alfa/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/química , Apolipoproteína A-I/genética , Células Vero , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Interferon alfa-2
5.
Front Biosci (Landmark Ed) ; 28(9): 222, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37796711

RESUMO

Anti-vascular endothelial growth factor (VEGF) drugs are widely used in modern ophthalmology, especially in treating macular disorders like age-related macular degeneration or diabetic macular edema. Protocols for such treatments include repeated administration of intravitreal injections, with the volume of drug injected into the vitreous chamber seemingly high enough to cause an increase in intraocular pressure. Hence, questions might arise if such therapeutic approaches are safe for ocular tissue. Moreover, anti-VEGF compounds may theoretically harm the retinal nerve fibers due to the inhibition of VEGF and its neuroprotective effects. Thus, this manuscript aims to review the literature regarding studies evaluating the retinal nerve fiber layer (RNFL) in eyes receiving anti-VEGF treatment due to age-related macular degeneration. The RNFL was chosen as a subject of this review, as it is the innermost retinal layer exposed to the direct action of intravitreally administered drugs. The results of the available studies remain inconclusive. Most researchers seem to confirm the safety of the anti-VEGF treatment in wet age-related macular degeneration, at least regarding the retinal nerve fiber layer. However, some authors noticed that the influence of anti-VEGFs on RNFL could become apparent after more than thirty injections. Nonetheless, the authors of all studies agree that further, long-term observations are needed to help clinicians understand the effect of anti-VEGF treatment on the dynamics of changes in the thickness of retinal nerve fibers in patients with the wet form of age-related macular degeneration.


Assuntos
Retinopatia Diabética , Edema Macular , Degeneração Macular Exsudativa , Humanos , Inibidores da Angiogênese/efeitos adversos , Retinopatia Diabética/tratamento farmacológico , Edema Macular/tratamento farmacológico , Fibras Nervosas , Ranibizumab/farmacologia , Ranibizumab/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Estudos Retrospectivos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Degeneração Macular Exsudativa/tratamento farmacológico
7.
Sci Rep ; 13(1): 14556, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666868

RESUMO

Deriving stem cells to regenerate full-thickness human skin is important for treating skin disorders without invasive surgical procedures. Our previous protocol to differentiate human induced pluripotent stem cells (iPSCs) into skin-derived precursor cells (SKPs) as a source of dermal stem cells employs mouse fibroblasts as feeder cells and is therefore unsuitable for clinical use. Herein, we report a feeder-free method for differentiating iPSCs into SKPs by customising culture substrates. We immunohistochemically screened for laminins expressed in dermal papillae (DP) and explored the conditions for inducing the differentiation of iPSCs into SKPs on recombinant laminin E8 (LM-E8) fragments with or without conjugation to domain I of perlecan (PDI), which binds to growth factors through heparan sulphate chains. Several LM-E8 fragments, including those of LM111, 121, 332, 421, 511, and 521, supported iPSC differentiation into SKPs without PDI conjugation. However, the SKP yield was significantly enhanced on PDI-conjugated LM-E8 fragments. SKPs induced on PDI-conjugated LM111-E8 fragments retained the gene expression patterns characteristic of SKPs, as well as the ability to differentiate into adipocytes, osteocytes, and Schwann cells. Thus, PDI-conjugated LM-E8 fragments are promising agents for inducing iPSC differentiation into SKPs in clinical settings.


Assuntos
Diferenciação Celular , Proteoglicanas de Heparan Sulfato , Células-Tronco Pluripotentes Induzidas , Peptídeos e Proteínas de Sinalização Intercelular , Laminina , Fragmentos de Peptídeos , Domínios Proteicos , Pele , Humanos , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteoglicanas de Heparan Sulfato/química , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Laminina/química , Laminina/farmacologia , Osteócitos/citologia , Osteócitos/efeitos dos fármacos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Pele/citologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia
8.
Br J Haematol ; 203(1): 119-130, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735543

RESUMO

Thrombopoietin receptor agonists (TPO-RAs) stimulate platelet production, which might restore immunological tolerance in primary immune thrombocytopenia (ITP). The iROM study investigated romiplostim's immunomodulatory effects. Thirteen patients (median age, 31 years) who previously received first-line treatment received romiplostim for 22 weeks, followed by monitoring until week 52. In addition to immunological data, secondary end-points included the sustained remission off-treatment (SROT) rate at 1 year, romiplostim dose, platelet count and bleedings. Scheduled discontinuation of romiplostim and SROT were achieved in six patients with newly diagnosed ITP, whereas the remaining seven patients relapsed. Romiplostim dose titration was lower and platelet count response was stronger in patients with SROT than in relapsed patients. In all patients, regulatory T lymphocyte (Treg) counts increased until study completion and the counts were higher in patients with SROT. Interleukin (IL)-4, IL-9 and IL-17F levels decreased significantly in all patients. FOXP3 (Treg), GATA3 (Th2) mRNA expression and transforming growth factor-ß levels increased in patients with SROT. Treatment with romiplostim modulates the immune system and possibly influences ITP prognosis. A rapid increase in platelet counts is likely important for inducing immune tolerance. Better outcomes might be achieved at an early stage of autoimmunity, but clinical studies are needed for confirmation.


Assuntos
Púrpura Trombocitopênica Idiopática , Humanos , Adulto , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Imunomodulação , Tolerância Imunológica , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico
9.
Blood Coagul Fibrinolysis ; 34(6): 353-363, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37577860

RESUMO

Extended half-life recombinant FIX (rFIX) molecules have been generated to reduce the dosing burden and increase the protection of patients with hemophilia B. Clinical pharmacology studies with recombinant factor IX Fc fusion protein (rFIXFc) report a similar initial peak plasma recovery to that of rFIX, but with a larger volume of distribution. Although the pegylation of N9-GP results in a larger plasma recovery, there is a smaller volume of distribution, suggesting less extravasation of the latter drug. In this study, we set out to compare the biodistribution and tissue localization of rFIX, rFIXFc, and glycoPEGylated rFIX in a hemophilia B mouse model. Radiolabeled rFIX, rFIXFc, and rFIX-GP were employed in in vivo single-photon emission computed tomography imaging (SPECT/CT), microautoradiography (MARG), and histology to assess the distribution of FIX reagents over time. Immediately following injection, vascularized tissues demonstrated intense signal irrespective of FIX reagent. rFIX and rFIXFc were retained in joint and muscle areas through 5 half-lives, unlike rFIX-GP (assessed by SPECT). MARG and immunohistochemistry showed FIX agents localized at blood vessels among tissues, including liver, spleen, and kidney. Microautoradiographs, as well as fluorescent-labeled images of knee joint areas, demonstrated retention over time of FIX signal at the trabecular area of bone. Data indicate that rFIXFc is similar to rFIX in that it distributes outside the plasma compartment and is retained in certain tissues over time, while also retained at higher plasma levels. Overall, data suggest that Fc fusion does not impede the extravascular distribution of FIX.


Assuntos
Fator IX , Hemofilia B , Camundongos , Animais , Fator IX/farmacologia , Fator IX/uso terapêutico , Distribuição Tecidual , Meia-Vida , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Proteínas Recombinantes de Fusão/metabolismo , Indicadores e Reagentes , Proteínas Recombinantes
10.
J Ocul Pharmacol Ther ; 39(9): 653-660, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37504966

RESUMO

Purpose: To compare the effectiveness of intravitreal injections of brolucizumab and aflibercept in patients with polypoidal choroidal vasculopathy (PCV). Methods: In total, 62 treatment-naive PCV eyes (62 patients) treated with intravitreal brolucizumab or aflibercept were analyzed retrospectively. All patients received a monthly loading injection of antivascular endothelial growth factor for 3 months, followed by further injections as required. Visual and anatomical outcomes were compared between drugs after 12 months of treatment. Results: The improvement in best-corrected visual acuity after 12 months of treatment was not significantly different between the brolucizumab-treated (22 eyes) and aflibercept-treated groups (40 eyes). However, in the brolucizumab-treated group, there was a significantly greater decrease in central retinal thickness (172 vs. 147 µm; P = 0.031) and subfoveal choroidal thickness after treatment (51 vs. 29 µm; P = 0.025). In addition, the regression rate of polypoidal lesions was significantly higher in the brolucizumab-treated group (77.3%, 17/22 eyes) than that in the aflibercept-treated group (45.0%, 18/40 eyes; P = 0.014). Sterile intraocular inflammation showing mild vitritis was observed in 1 of the 22 eyes (4.5%) of brolucizumab-treated patients. Conclusion: Intravitreal brolucizumab injections for PCV showed visual improvement comparable to that of aflibercept during the 12-month treatment period. However, brolucizumab was more effective than aflibercept for the regression of polypoidal lesions and caused a greater decrease in central retinal thickness and subfoveal choroidal thickness.


Assuntos
Inibidores da Angiogênese , Neovascularização de Coroide , Humanos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Vasculopatia Polipoidal da Coroide , Neovascularização de Coroide/diagnóstico , Neovascularização de Coroide/tratamento farmacológico , Estudos Retrospectivos , Fator A de Crescimento do Endotélio Vascular , Tomografia de Coerência Óptica , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Injeções Intravítreas , Resultado do Tratamento , Angiofluoresceinografia
11.
Adv Healthc Mater ; 12(29): e2301441, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37414582

RESUMO

Rspos (R-spondins) belong to a family of secreted proteins that causes various cancers via interacting the corresponding receptors. However, targeted therapeutic approaches against Rspos are largely lacking. In this study, a chimeric protein Rspo-targeting anticancer chimeric protein (RTAC) is originally designed, engineered, and characterized. RTAC shows satisfactory anticancer effects through inhibition of pan-Rspo-mediated Wnt/ß-catenin signaling activation both in vitro and in vivo. Furthermore, a conceptually novel antitumor strategy distinct from traditional drug delivery systems that release drugs inside tumor cells is proposed. A special "firewall" nano-system is designed to enrich on tumor cell surface and cover the plasma membrane, rather than undergoing endocytosis, to block oncogenic Rspos from binding to receptors. Cyclic RGD (Arg-Gly-Asp) peptide-linked globular cluster serum albumin nanoparticles (SANP) are integrated as a vehicle for conjugating RTAC (SANP-RTAC/RGD) for tumor tissue targeting. These nanoparticles can adhere to the tumor cell surface and enable RTAC to locally capture free Rspos with high spatial efficiency and selectivity to antagonize cancer progression. Therefore, this approach offers a new nanomedical anticancer route and obtains the "dual-targeting" capability for effective tumor clearance and low potential toxicity. This study presents a proof-of-concept for anti-pan-Rspo therapy and a nanoparticle-integrated paradigm for targeted cancer treatment.


Assuntos
Neoplasias , Via de Sinalização Wnt , Humanos , Via de Sinalização Wnt/fisiologia , Neoplasias/tratamento farmacológico , Albuminas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico
12.
Growth Factors ; 41(3): 140-151, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37377438

RESUMO

This project aimed to produce a biosimilar version of aflibercept (AFL) and evaluate the effect of the co-treatment of AFL with other vascular endothelial growth factor (VEGF) blocker drugs. For this purpose, the optimized gene was inserted into the pCHO1.0 plasmid and transfected into the CHO-S cell line. The final concentration of biosimilar-AFL for the selected clone was 782 mg/L. Results revealed that the inhibition potential of the biosimilar-AFL on HUVEC cells was significant at 10 and 100 nM concentrations and in a dose-dependent manner. Furthermore, co-treatment of biosimilar-AFL with Everolimus (EVR), Lenvatinib (LEN), and Sorafenib (SOR) could reduce HUVEC cell viability/proliferation, more than when used alone. When LEN and SOR were co-treated with biosimilar-AFL, their cytotoxicity increased 10-fold. The most and least efficient combination was seen when biosimilar-AFL combined with LEN and EVR, respectively. Finally, biosimilar-AFL may improve the efficiency of LEN, EVR, and SOR in reducing the VEGF effect on endothelial cells.


Assuntos
Medicamentos Biossimilares , Fator A de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Células Endoteliais/metabolismo , Medicamentos Biossimilares/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Sorafenibe/farmacologia
13.
Mol Pharm ; 20(6): 2864-2875, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37134184

RESUMO

Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) constitutes a promising antitumor drug, tumor resistance to TRAIL has become a major obstacle in its clinical application. Mitomycin C (MMC) is an effective TRAIL-resistant tumor sensitizer, which indicates a potential utility of combination therapy. However, the efficacy of this combination therapy is limited owing to its short half-life and the cumulative toxicity of MMC. To address these issues, we successfully developed a multifunctional liposome (MTLPs) with human TRAIL protein on the surface and MMC encapsulated in the internal aqueous phase to codeliver TRAIL and MMC. MTLPs are uniform spherical particles that exhibit efficient cellular uptake by HT-29 TRAIL-resistant tumor cells, thereby inducing a stronger killing effect compared with control groups. In vivo assays revealed that MTLPs efficiently accumulated in tumors and safely achieved 97.8% tumor suppression via the synergistic effect of TRAIL and MMC in an HT-29 tumor xenograft model while ensuring biosafety. These results suggest that the liposomal codelivery of TRAIL and MMC provides a novel approach to overcome TRAIL-resistant tumors.


Assuntos
Lipossomos , Mitomicina , Nanopartículas , Proteínas Recombinantes de Fusão , Ligante Indutor de Apoptose Relacionado a TNF , Lipossomos/química , Lipossomos/farmacologia , Mitomicina/farmacologia , Linhagem Celular Tumoral , Proteínas Recombinantes de Fusão/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Nanopartículas/química , Humanos
14.
Arch Microbiol ; 205(6): 220, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148384

RESUMO

Targeted delivery of a toxin substance to cancer cells is one of the most recent cancer treatment options. Mistletoe Lectin-1 (ML1) in Viscum album L. is a Ribosome-inactivating proteins with anticancer properties. Therefore, it appears that a recombinant protein with selective permeability can be generated by fusing ML1 protein with Shiga toxin B, which can bind to Gb3 receptor that is abundantly expressed on cancer cells. In this study, we sought to produce and purify a fusion protein containing ML1 fused to STxB and evaluate its cytotoxic activities. The ML1-STxB fusion protein coding sequence was cloned into the pET28a plasmid, then was transformed into E. coli BL21-DE3 cells. Following induction of protein expression, Ni-NTA affinity chromatography was used to purify the protein. Using SDS-PAGE and western blotting, the expression and purification processes were validated. On the SkBr3 cell line, the cytotoxic effects of the recombinant proteins were evaluated. On SDS-PAGE and western blotting membrane, analysis of purified proteins revealed a band of approximately 41 kDa for rML1-STxB. Ultimately, statistical analysis demonstrated that rML1-STxB exerted significant cytotoxic effects on SkBr3 cells at 18.09 and 22.52 ng/L. The production, purification, and encapsulation of rML1-STxB fusion protein with potential cancer cell-specific toxicity were successful. However, additional research must be conducted on the cytotoxic effects of this fusion protein on other malignant cell lines and in vivo cancer models.


Assuntos
Antineoplásicos , Produtos Biológicos , Erva-de-Passarinho , Viscum album , Lectinas , Escherichia coli/genética , Escherichia coli/metabolismo , Erva-de-Passarinho/metabolismo , Viscum album/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/metabolismo , Antineoplásicos/farmacologia , Produtos Biológicos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia
15.
Sci Rep ; 13(1): 5653, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024665

RESUMO

Malate dehydrogenase (MDH) plays an important role in the conversion of malate to oxaloacetate during the tricarboxylic acid cycle. In this study, we examined the role of cytoplasmic MDH (MDH1) in hydrogen peroxide (H2O2)-induced oxidative stress in HT22 cells and ischemia-induced neuronal damage in the gerbil hippocampus. The Tat-MDH1 fusion protein was constructed to enable the delivery of MDH1 into the intracellular space and penetration of the blood-brain barrier. Tat-MDH1, but not MDH1 control protein, showed significant cellular delivery in HT22 cells in a concentration- and time-dependent manner and gradual intracellular degradation in HT22 cells. Treatment with 4 µM Tat-MDH1 significantly ameliorated 200 µM H2O2-induced cell death, DNA fragmentation, and reactive oxygen species formation in HT22 cells. Transient increases in MDH1 immunoreactivity were detected in the hippocampal CA1 region 6-12 h after ischemia, but MDH1 activity significantly decreased 2 days after ischemia. Supplementation of Tat-MDH1 immediately after ischemia alleviated ischemia-induced hyperlocomotion and neuronal damage 1 and 4 days after ischemia. In addition, treatment with Tat-MDH1 significantly ameliorated the increases in hydroperoxides, lipid peroxidation, and reactive oxygen species 2 days after ischemia. Tat-MDH1 treatment maintained the redox status of the glutathione system in the hippocampus 2 days after ischemia. These results suggest that Tat-MDH1 exerts neuroprotective effects by reducing oxidative stress and maintaining glutathione redox system in the hippocampus.


Assuntos
Produtos do Gene tat , Isquemia , Malato Desidrogenase , Fármacos Neuroprotetores , Estresse Oxidativo , Animais , Produtos do Gene tat/farmacologia , Gerbillinae , Hipocampo/metabolismo , Peróxido de Hidrogênio/metabolismo , Isquemia/tratamento farmacológico , Malato Desidrogenase/farmacologia , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Camundongos
16.
Int J Mol Sci ; 24(8)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37108504

RESUMO

Thioredoxin (Trx) plays a critical role in maintaining redox balance in various cells and exhibits anti-oxidative, anti-apoptotic, and anti-inflammatory effects. However, whether exogenous Trx can inhibit intracellular oxidative damage has not been investigated. In previous study, we have identified a novel Trx from the jellyfish Cyanea capillata, named CcTrx1, and confirmed its antioxidant activities in vitro. Here, we obtained a recombinant protein, PTD-CcTrx1, which is a fusion of CcTrx1 and protein transduction domain (PTD) of HIV TAT protein. The transmembrane ability and antioxidant activities of PTD-CcTrx1, and its protective effects against H2O2-induced oxidative damage in HaCaT cells were also detected. Our results revealed that PTD-CcTrx1 exhibited specific transmembrane ability and antioxidant activities, and it could significantly attenuate the intracellular oxidative stress, inhibit H2O2-induced apoptosis, and protect HaCaT cells from oxidative damage. The present study provides critical evidence for application of PTD-CcTrx1 as a novel antioxidant to treat skin oxidative damage in the future.


Assuntos
Peptídeos Penetradores de Células , Cifozoários , Animais , Produtos do Gene tat/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Estresse Oxidativo , Cifozoários/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/farmacologia , Tiorredoxinas/química
17.
Arch Microbiol ; 205(5): 199, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069440

RESUMO

Antibiotic-resistant pathogens have become a great universal health concern. Antimicrobial peptides (AMPs) are small amphipathic and cationic polypeptides with high therapeutic potential against various microorganisms containing drug-resistant strains. Two major groups of these peptides, which have antibacterial activity against Gram-positive and Gram-negative bacteria, antiviral activity, and even antifungal activity, are defensins and cathelicidins. Hybridization of various AMPs is an appropriate approach to achieving new fusion AMPs with high antibacterial activity but low cellular toxicity. In the current research, the amino-acid sequence of human cathelicidin LL-37 (2-31) and Human beta-defensin (hBD)-129 were combined, and the fusion protein was evaluated by bioinformatics tool. The designed AMP gene sequence was commercially synthesized and cloned in the pET-28a expression vector. The LL-37/hBD-129 fusion protein was expressed in E.coli BL21-gold (DE3). The expression of the recombinant protein was evaluated using the SDS-PAGE method. The LL37/hBD-129 was successfully expressed as a recombinant hybrid AMP in E.coli BL21-gold (DE3) strain. Purification of the expressed AMP was performed by Ni-NTA column affinity chromatography, and the purified AMP was validated using the Western blot technic. Finally, the antimicrobial activity of the fusion AMP against Staphylococcus aureus and Escherichia coli bacteria was assessed. Based on the in silico analysis and experimental evaluations, the fusion AMP showed a significant antimicrobial effect on E. coli and Staphylococcus aureus bacteria.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Catelicidinas , Proteínas Recombinantes de Fusão , beta-Defensinas , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/farmacologia , beta-Defensinas/biossíntese , beta-Defensinas/química , beta-Defensinas/genética , beta-Defensinas/farmacologia , Catelicidinas/biossíntese , Catelicidinas/química , Catelicidinas/genética , Catelicidinas/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/isolamento & purificação , Peptídeos Antimicrobianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Desenho de Fármacos , Simulação por Computador , Simulação de Dinâmica Molecular , Testes de Sensibilidade Microbiana , Estabilidade Proteica
18.
Med ; 4(5): 326-340.e5, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37059099

RESUMO

BACKGROUND: Interleukin-12 (IL-12) has emerged as one of the most potent cytokines for tumor immunotherapy due to its ability to induce interferon γ (IFNγ) and polarize Th1 responses. Clinical use of IL-12 has been limited by a short half-life and narrow therapeutic index. METHODS: We generated a monovalent, half-life-extended IL-12-Fc fusion protein, mDF6006, engineered to retain the high potency of native IL-12 while significantly expanding its therapeutic window. In vitro and in vivo activity of mDF6006 was tested against murine tumors. To translate our findings, we developed a fully human version of IL-12-Fc, designated DF6002, which we characterized in vitro on human cells and in vivo in cynomolgus monkeys in preparation for clinical trials. FINDINGS: The extended half-life of mDF6006 modified the pharmacodynamic profile of IL-12 to one that was better tolerated systemically while vastly amplifying its efficacy. Mechanistically, mDF6006 led to greater and more sustained IFNγ production than recombinant IL-12 without inducing high, toxic peak serum concentrations of IFNγ. We showed that mDF6006's expanded therapeutic window allowed for potent anti-tumor activity as single agent against large immune checkpoint blockade-resistant tumors. Furthermore, the favorable benefit-risk profile of mDF6006 enabled effective combination with PD-1 blockade. Fully human DF6002, similarly, demonstrated an extended half-life and a protracted IFNγ profile in non-human primates. CONCLUSION: An optimized IL-12-Fc fusion protein increased the therapeutic window of IL-12, enhancing anti-tumor activity without concomitantly increasing toxicity. FUNDING: This research was funded by Dragonfly Therapeutics.


Assuntos
Neoplasias , Odonatos , Animais , Camundongos , Fatores Imunológicos/uso terapêutico , Interferon gama/metabolismo , Interleucina-12/genética , Interleucina-12/farmacologia , Interleucina-12/uso terapêutico , Neoplasias/tratamento farmacológico , Odonatos/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Índice Terapêutico
19.
Iran J Immunol ; 20(1): 36-44, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36932908

RESUMO

Background: Allergic dermatitis (AD) is an inflammatory skin disease that arises from abnormal T lymphocyte activation. A recombinant fusion protein comprising Helicobacter pylori neutrophil-activating protein and maltose binding protein, rMBP-NAP, has been documented as a novel immunomodulatory TLR agonist. Objective: To explore the effect of the rMBP-NAP on the OXA-induced AD in a mouse model and clarify the possible action mechanism. Methods: The AD animal model was induced by repeated administration of oxazolone (OXA) in BALB/c mice. H&E staining was used to analyze the ear epidermis thickness and the number of infiltrating inflammatory cells. TB staining was used to detect mast cell infiltration in the ear tissue. ELISA was used to analyze the secretion of cytokines IL-4 and IFN-γ in peripheral blood. qRT-PCR was used to determine the expression levels of IL-4, IFN-γ, and IL-13 in ear tissue. Results: OXA induced the establishment of an AD model. After the rMBP-NAP treatment, the thickness of the ear tissue and the number of mast cells infiltrated in AD mice reduced, and the serum and ear tissue levels of IL-4 and IFN-γ increased, but the ratio of IFN-γ (rMBP-NAP group)/IL-4 (rMBP-NAP group) was greater than the ratio of IFN-γ (sensitized group)/IL-4 (sensitized group). Conclusion: The rMBP-NAP improved the disease symptoms including skin lesions in AD, alleviated the inflammation in ear tissue, and restored the Th1/2 balance by inducing a shift from the Th2 to the Th1 response. The results of our work support the use of rMBP-NAP as an immunomodulator for AD treatment in future investigations.


Assuntos
Dermatite Atópica , Proteínas Recombinantes de Fusão , Equilíbrio Th1-Th2 , Animais , Camundongos , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/terapia , Interleucina-4/metabolismo , Camundongos Endogâmicos BALB C , Oxazolona , Células Th2 , Proteínas Recombinantes de Fusão/farmacologia
20.
Chem Biol Drug Des ; 101(6): 1406-1415, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36862057

RESUMO

Antibody-directed drugs for targeted cancer treatment have become a hot topic in new anticancer drug development; however, antibody-fused therapeutic peptides were rarely documented. Herein, we designed a fusion protein with a cetuximab-derived single-chain variable fragment targeting epidermal growth factor receptor (anti-EGFR scFv) and the anticancer lytic peptide (ACLP) ZXR2, connected by a linker (G4 S)3 and MMP2 cleavage site. The anti-EGFR scFv-ZXR2 recombinant protein showed specific anticancer activity on EGFR-overexpressed cancer cell lines in a concentration- and time-dependent manner, as it can bind to EGFR on cancer cell surfaces. This fusion protein caused cell membrane lysis as ZXR2, and showed improved stability in serum compared with ZXR2. These results suggest that scFv-ACLP fusion proteins may be potential anticancer drug candidates for targeted cancer treatment, which also provide a feasible idea for targeted drug design.


Assuntos
Antineoplásicos , Neoplasias , Anticorpos de Cadeia Única , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cetuximab/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Anticorpos de Cadeia Única/farmacologia , Anticorpos de Cadeia Única/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...